Membrane-type I matrix metalloproteinase-dependent ectodomain shedding of mucin16/ CA-125 on ovarian cancer cells modulates adhesion and invasion of peritoneal mesothelium.
نویسندگان
چکیده
Mucin16 [MUC16/cancer antigen 125 (CA-125)], a high-molecular-weight glycoprotein expressed on the ovarian tumor cell surface, potentiates metastasis via selective binding to mesothelin on peritoneal mesothelial cells. Shed MUC16/CA-125 is detectable in sera from ovarian cancer patients. We investigated the potential role of membrane type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane collagenase highly expressed in ovarian cancer cells, in MUC16/CA-125 ectodomain shedding. An inverse correlation between MT1-MMP and MUC16 immunoreactivity was observed in human ovarian tumors and cells. Further, when MUC16-expressing OVCA433 cells were engineered to overexpress MT1-MMP, surface expression of MUC16/CA-125 was lost, whereas cells expressing the inactive E240A mutant retained surface MUC16/CA-125. As a functional consequence, decreased adhesion of cells expressing catalytically active MT1-MMP to three-dimensional meso-mimetic cultures and intact ex vivo peritoneal tissue explants was observed. Nevertheless, meso-mimetic invasion is enhanced in MT1-MMP-expressing cells. Together, these data support a model wherein acquisition of catalytically active MT1-MMP expression in ovarian cancer cells induces MUC16/CA-125 ectodomain shedding, reducing adhesion to meso-mimetic cultures and to intact peritoneal explants. However, proteolytic clearing of MUC16/CA-125, catalyzed by MT1-MMP, may then expose integrins for high-affinity cell binding to peritoneal tissues, thereby anchoring metastatic lesions for subsequent proliferation within the collagen-rich sub-mesothelial matrix.
منابع مشابه
Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells.
Reversible modulation of cell-cell adhesion, cell-matrix adhesion, and proteolytic activity plays a critical role in remodeling of the neoplastic ovarian epithelium during metastasis, implicating cadherins, integrins, and proteinases in i.p. metastatic dissemination of epithelial ovarian carcinoma (EOC). Aberrant epithelial differentiation is an early event in ovarian carcinogenesis; thus, in c...
متن کاملOvarian cancer cell detachment and multicellular aggregate formation are regulated by membrane type 1 matrix metalloproteinase: a potential role in I.p. metastatic dissemination.
An early event in the metastasis of epithelial ovarian carcinoma is shedding of cells from the primary tumor into the peritoneal cavity followed by diffuse i.p. seeding of secondary lesions. Anchorage-independent metastatic cells are present as both single cells and multicellular aggregates (MCA), the latter of which adhere to and disaggregate on human mesothelial cell monolayers, subsequently ...
متن کاملIntegrin-linked kinase activity modulates the pro-metastatic behavior of ovarian cancer cells
Epithelial ovarian cancer (EOC) is the most fatal gynecologic cancer in the U.S., resulting in >14,000 deaths/year. Most women are diagnosed at late stage with widely disseminated intra-peritoneal metastatic disease, resulting in a 5-year survival rate of <30%. EOCs spread via direct extension and exfoliation into the peritoneal cavity, adhesion to peritoneal mesothelial cells, mesothelial cell...
متن کاملAngiogenesis, Metastasis, and the Cellular Microenvironment Copper Modulates Zinc Metalloproteinase-Dependent Ectodomain Shedding of Key Signaling and Adhesion Proteins and Promotes the Invasion of Prostate Cancer Epithelial Cells
A disintegrin and metalloproteinases (ADAMs) and matrix metalloproteinases (MMPs) are zinc metalloproteinases (ZMPs) that catalyze the "ectodomain shedding" of a range of cell surface proteins including signaling and adhesion molecules. These "sheddases" are associated with the invasion and metastasis of a range of cancers. Increased serum and tumor tissue levels of copper are also observed in ...
متن کاملInhibition of CD44 expression by small interfering RNA to suppress the growth and metastasis of ovarian cancer cells in vitro and in vivo.
Since ovarian cancer cells express CD44, which causes very strong cell adhesion to peritoneal mesothelium and an unfavourable prognosis, we designed small interfering RNA (siRNA) targeting the CD44 gene to analyse the functional consequences of this inhibition in human ovarian cancer. We transfected ovarian cancer cell line SKOV-3 with well-designed CD44 siRNA or control siRNA. Western blot ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biological chemistry
دوره 395 10 شماره
صفحات -
تاریخ انتشار 2014